Heterocyclic Mesomeric Betaines. Part 6. ${ }^{1}$ Synthesis and a Cycloaddition of a Hetero Derivative of the 1-Methylenephenalene-3-methide Anion

W. David Ollis, *, ${ }^{*}$ Stephen P. Stanforth ${ }^{\boldsymbol{a}}$ and Barry J. Price ${ }^{b}$
${ }^{a}$ Department of Chemistry, The University, Sheffield S3 7HF, UK
${ }^{\text {o }}$ Glaxo Group Research L'td., Greenford Road, Greenford, Middlesex UB6 OHE, UK

Abstract

Synthesis of the cross-conjugated heterocyclic mesomeric betaine 4 is reported. This mesomeric betaine 4 is isoconjugate with the odd alternant hydrocarbon anion 5 ($R=P h$). Cycloaddition of the betaine 4 with dimethyl acetylenedicarboxylate yields the 1,4-cycloadduct 14.

Heterocyclic mesomeric betaines have been classified as conjugated, cross-conjugated, and pseudo-cross-conjugated systems. ${ }^{2}$ These three systems are exemplified by the tricyclic structures 1,2 and 3 , respectively. No representative of these tricycles 1,2 and 3 has yet been synthesised. The synthesis of the betaine 4 is now reported. The compounds 2 and 4 are cross-conjugated heterocyclic mesomeric betaines ${ }^{2}$ in which the positive and negative charges are exclusively restricted to separate parts of the π-electron system of these molecules. The cross-conjugated mesomeric betaines 2 and 4 are isoconjugate with the odd alternant hydrocarbon anions $5(\mathrm{R}=\mathrm{H}$ or Ph$)$.

1

3

4

The synthesis (Scheme 1) of the cross-conjugated heterocyclic mesomeric betaine 4 utilised the azaphenalenone 6 as the starting material. ${ }^{3}$ Thermal condensation of diethyl 2-phenylmalonate and tetrahydroquinoline gave the enolic azaphenalenone 6 which gave one product $7(83 \%)$ with benzenesulfonyl chloride-pyridine. The constitution of 7, as a derivative of quinolin-2-one, was assigned by comparison of its spectroscopic properties $\left[\begin{array}{llllll}v_{\mathrm{CO}}(\mathrm{KBr}) / \mathrm{cm}^{-1} & 1645 ; & { }^{13} \mathrm{C} & \left(\mathrm{CDCl}_{3}\right) & \delta & 161.3\end{array}\right]$ with ${ }^{13} \mathrm{C}$ NMR spectra reported for N-methylquinolin-2-one $\left[\begin{array}{ll}\delta_{\text {co }} & 162.6\end{array}\right]$ and N-methylquinolin-4-one $\left[\begin{array}{ll}\delta_{\text {co }} & 178.4\end{array}\right] .^{4}$ Benzylic bromination, using N-bromosuccinimide (NBS) in carbon tetrachloride, gave the bromo derivative $8(87 \%)$ which was transformed into the dehydro compound 11, either by the sequence $8 \rightarrow 9 \rightarrow 11$ involving base-catalysed \{1,5-diazabicyclo[5.4.0] undec-7-ene (DBU) $\}$ elimination $8 \rightarrow 9(72 \%)$ followed by alkaline hydrolysis $9 \rightarrow 11(100 \%)$, or by the
sequence $\mathbf{8} \rightarrow \mathbf{1 0} \rightarrow \mathbf{1 1}(87 \%)$ involving alkaline hydrolysis $8 \rightarrow \mathbf{1 0}$ followed by acid-catalysed dehydration $10 \rightarrow 11$.

Dehydrogenation $11 \rightarrow \mathbf{1 2}(53 \%)$ was best achieved using triphenylcarbenium tetrafluoroborate as the hydride acceptor. ${ }^{5}$ Deprotonation of the salt 12 with triethylamine gave the crossconjugated heterocyclic mesomeric betaine $4(90 \%$) as deep purple crystals, m.p. $222{ }^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ chemical shifts of the six aromatic hydrogen atoms (4-, 5-, 6-, $7-, 8$ - and $9-\mathrm{H}$) of the quinolinium group of the salt $12\left[\left(\mathrm{CD}_{3} \mathrm{CN}\right) \delta 10.10,8.45\right.$, $9.62,8.96 / 8.75,8.22$ and $8.75 / 8.96]$ and the betaine $4\left[\left(\mathrm{CD}_{3}-\right.\right.$ $\left.\mathrm{SOCD}_{3}\right) \delta 10.12,8.15,9.20,8.86 / 8.45,8.04$ and $\left.8.45 / 8.86\right]$ show an instructive correspondence. This supports the crossconjugated nature of the betaine 4 because the positive charge is clearly restricted to the quinolinium group in both structures 12 and 4.

Conjugated heterocyclic mesomeric betaines normally participate in 1,3-dipolar cycloadditions, whereas cross-conjugated heterocyclic mesomeric betaines participate in 1,4-dipolar cycloadditions. The study of the cycloadditions of crossconjugated heterocyclic mesomeric betaines has previously been limited to those cross-conjugated systems which are isoconjugate with even alternant hydrocarbon dianions. ${ }^{2}$

Cycloaddition of the betaine 4 with dimethyl acetylenedicarboxylate provides the first example of the cycloaddition of a cross-conjugated system isoconjugate with an odd alternant hydrocarbon anion $5(\mathrm{R}=\mathrm{Ph})$. Treatment of the salt 12 with triethylamine in the presence of dimethyl acetylenedicarboxylate yields a product of 1,4-cycloaddition (Scheme 2). The direct cycloadduct would have the constitution 13 , but structure 13 for the product is clearly eliminated by its ${ }^{1} \mathrm{H}$ NMR spectrum. The base-catalysed prototropic rearrangement $13 \rightarrow 14$ yields the product 14 which is firmly characterised by the singlet signal ($\delta 5.79 ; 2-\mathrm{H}$) in its ${ }^{1} \mathrm{H}$ NMR spectrum.

Experimental

General experimental directions are given in Part $1 .{ }^{6} \mathrm{~J}$-Values are given in Hz .

1-Hydroxy-2-phenyl-5,6-dihydro-3a-azaphenalen-3(4H)-one 6.-Diethyl 2-phenylmalonate ($25 \mathrm{~cm}^{3}$) and 1,2,3,4-tetrahydroquinoline ($25 \mathrm{~cm}^{3}$) were heated under reflux (6.5 h). Ethanol was removed by distillation and the solid residue was then washed with diethyl ether giving the title compound $6(28.9 \mathrm{~g}$, 52%), m.p. $222-228^{\circ} \mathrm{C}$ (lit., ${ }^{3} 220-222^{\circ} \mathrm{C}$) which was used directly, $\delta_{\mathrm{H}}\left(\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right) 8.35(1 \mathrm{H}, \mathrm{d}, J 8,9-\mathrm{H}), 7.87(1 \mathrm{H}, \mathrm{d}$, $J 8,7-\mathrm{H}), 7.80-7.75(4 \mathrm{H}, \mathrm{m}), 7.60-7.50(2 \mathrm{H}, \mathrm{m}), 4.67(2 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}), 3.30(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$ and $2.44(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$.

2-Phenyl 1-Phenylsulfonyloxy-5,6-dihydro-3a-azaphenalen$3(4 \mathrm{H})$-one 7.-Benzenesulfonyl chloride $\left(22 \mathrm{~cm}^{3}\right)$ was added dropwise (30 min) to an ice-cooled, stirred solution of the

Scheme 1 Reagents: i, PhSO_{2} Cl-pyridine; ii, NBS- CCl_{4}; iii, DBU; iv, $\mathrm{KOH}-\mathrm{MeOH}$; v, aq. HCl ; vi, $\mathrm{AcOH}-\mathrm{H}_{2} \mathrm{SO}_{4}$; vii, $\left[\mathrm{Ph}_{3} \mathrm{C}^{+}\right]\left[{ }^{-} \mathrm{BF}_{4}\right]$; viii, $\mathrm{Et}_{3} \mathrm{~N}$

Scheme 2
preceding compound $6(46.5 \mathrm{~g})$ in pyridine $\left(100 \mathrm{~cm}^{3}\right)$. After warming to room temperature (1 h), the mixture was poured into cold dilute hydrochloric acid. The precipitate was collected, washed and crystallised from chloroform-ethanol to give the title compound 7 ($58.1 \mathrm{~g}, 83 \%$) as colourless rhombs, m.p. 204 $206{ }^{\circ} \mathrm{C}$ (Found: C, 68.8; H, 4.8; N, 3.2; S, $8.0 \% ; \mathrm{M}^{+\cdot}, 417$. $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ requires C, 69.0; H, 4.6; N, 3.4; S, 7.7\%; M, 417); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1645,1590,1365,1190,1080$ and $750 ; \delta_{\mathrm{H}} 8.02$ ($1 \mathrm{H}, \mathrm{d}, J 7,9-\mathrm{H}), 7.60-7.10(12 \mathrm{H}, \mathrm{m}), 4.25(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J 6,4-\mathrm{H})$, $3.02(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J 6,6-\mathrm{H})$ and $2.17(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}) ; \delta_{\mathrm{c}}\left(\mathrm{CDCl}_{3}\right)$ 161.3, 150.6, 136.2, 135.8, 133.6, 131.7, 130.6 (two C), 128.7, 127.8, 127.6, 127.4, 124.9, 124.5, 123.1, 121.9, 117.2, 43.0, 27.5 and 20.4 .

6-Bromo-2-phenyl 1-Phenylsulfonyloxy-5,6-dihydro-3a-aza-phenalen- $3(4 \mathrm{H})$-one 8 .-The preceding compound $7(15.1 \mathrm{~g}), N$ bromosuccinimide (6.8 g), dibenzoyl peroxide ($\sim 10 \mathrm{mg}$), and carbon tetrachloride ($70 \mathrm{~cm}^{3}$) were heated under reflux (3 h). After cooling, the mixture was diluted with dichloromethane ($50 \mathrm{~cm}^{3}$) and the organic layer was separated and treated with aqueous sodium hydroxide and then water. It was then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated to give a residue which was
recrystallised from methyl cyanide to yield the title compound $\mathbf{8}$ ($15.6 \mathrm{~g}, 87 \%$) as pale yellow rhombs, m.p. $152-153{ }^{\circ} \mathrm{C}$ (decomp.) [Found: C, 58.0; H, 3.8; Br, 16.1; N, 3.0; S, 6.7\%; m/z 415 (M $\mathrm{HBr}) . \mathrm{C}_{28} \mathrm{H}_{18} \mathrm{BrNO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 58.1 ; \mathrm{H}, 3.7 ; \mathrm{Br}, 16.1 ; \mathrm{N}, 3.0$; $\mathrm{S}, 6.7 \% ; M, 496] ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1645,1585,1360,1190$ and $760 ; \delta_{\mathrm{H}} 8.13(1 \mathrm{H}, \mathrm{d}, J 7,9-\mathrm{H}), 7.70-7.10(12 \mathrm{H}, \mathrm{m}), 5.65(1 \mathrm{H}$, br s, $6-\mathrm{H}), 4.98(1 \mathrm{H}$, br d, $J 12,4-\mathrm{H}), 4.12(1 \mathrm{H}, \mathrm{dt}, J 12$ and 3 , $4-\mathrm{H}), 2.64(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $2.42(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$.

2-Phenyl 1-Phenylsulfonyloxy-3a-azaphenalen-3(4H)-one 9.A solution of 1,8 -diazabicyclo[5.4.0]undec-7-ene ($3 \mathrm{~cm}^{3}$) in dichloromethane ($10 \mathrm{~cm}^{3}$) was added dropwise (20 min) to a stirred solution of the preceding compound $8(5.5 \mathrm{~g})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) at room temperature. After 2 h the solution was shaken with dilute hydrochloric acid, and then with water, dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$), and evaporated. Fractionation by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave the title compound $9(3.3 \mathrm{~g}, 72 \%)$ as pale yellow, feathery needles, m.p. $190-192{ }^{\circ} \mathrm{C}$ (decomp.) from methyl cyanide (Found: C, 69.4; H, 4.4; $\mathrm{N}, 3.3 ; \mathrm{S}, 7.5 \% ; \mathrm{M}^{+\bullet}, 415 . \mathrm{C}_{24} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$ requires $\mathrm{C}, 69.4 ; \mathrm{H}$, 4.1; N, 3.4; $\mathrm{S}, 7.7 \% ; M, 415) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1645,1585,1360$, 1190 and $1080 ; \delta_{\mathrm{H}} 7.90(1 \mathrm{H}, \mathrm{t}, J 5,9-\mathrm{H}), 7.60-7.10(12 \mathrm{H}, \mathrm{m})$, $6.51(1 \mathrm{H}, \mathrm{dt}, J 10$ and $2,6-\mathrm{H}), 6.02(1 \mathrm{H}, \mathrm{dt}, J 10$ and $4,5-\mathrm{H})$ and $4.90(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H})$.

1-Hydroxy-2-phenyl-3a-azaphenalen-3(4H)-one 11.-Method A. The preceding compound $9(1.0 \mathrm{~g})$ and potassium hydroxide (250 mg) in methanol ($10 \mathrm{~cm}^{3}$) were heated under reflux (1.5 h). The mixture was then cooled, poured into water, and acidified to give a precipitate ($660 \mathrm{mg}, 100 \%$) which was collected. Crystallisation from ethanol gave the title compound 11 as tan plates, m.p. 225-230 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+\boldsymbol{}}, 275.0950 . \mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires $M, 275.0947$); $\delta_{\mathrm{H}} 7.78(1 \mathrm{H}, \mathrm{dd}, J 8$ and $2,9-\mathrm{H}), 7.60-$ $7.10(7 \mathrm{H}, \mathrm{m}), 6.51(1 \mathrm{H}, \mathrm{dt}, J 10$ and $2,6-\mathrm{H}), 6.03(1 \mathrm{H}, \mathrm{dt}, J 10$ and $4,5-\mathrm{H})$ and $4.88(2 \mathrm{H}, \mathrm{br} \mathrm{dd}, J 4$ and $2,4-\mathrm{H})$.

Method B. The bromo compound 8 (2.2 g) and potassium hydroxide $(1.0 \mathrm{~g})$ in methanol $\left(10 \mathrm{~cm}^{3}\right)$ were heated under reflux (1.5 h). The mixture was then cooled and poured into iced, dilute hydrochloric acid. Extraction $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded 1,6 -dihydroxy-2-phenyl-5,6-dihydro-3a-azaphenalen-3(4H)-one 10 (1.3 g) which was directly dehydrated; $\delta_{\mathrm{H}} 8.01(1 \mathrm{H}, \mathrm{dd}, J 8$ and 2, $9-\mathrm{H}), 7.70-7.20(7 \mathrm{H}, \mathrm{m}), 6.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.58(1 \mathrm{H}, \mathrm{dt}, J 14$ and $4,4-\mathrm{H}), 4.48(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 3.97(1 \mathrm{H}, \mathrm{dt}, J 9$ and $4,4-\mathrm{H})$, $2.38(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $2.08(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$. Compound $10(1.1 \mathrm{~g})$ in acetic acid ($5 \mathrm{~cm}^{3}$) and concentrated sulfuric acid (4 drops) was heated (1 h) in an oil-bath $\left(100^{\circ} \mathrm{C}\right)$. Water was added to the cooled solution and extraction $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded the title compound 11 ($900 \mathrm{mg}, 87 \%$), identical with that produced by method A.

1-Hydroxy-3-oxo-2-phenyl-3a λ^{5}-azaphenalen-3a-ium Tetrafluoroborate 12.-The azaphenalenone $11(5.5 \mathrm{~g})$ and triphenylcarbenium tetrafluoroborate (6.6 g) in dichloromethane ($30 \mathrm{~cm}^{3}$) were stirred (1 h) at room temperature. After the mixture had cooled, the precipitate was collected to yield the title compound $12(3.85 \mathrm{~g}, 53 \%)$ as a rust-coloured powder, m.p. $>210{ }^{\circ} \mathrm{C}$ (decomp.) [Found: m / z 273.0787. $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{NO}_{2}(M-$ HBF_{4}) requires $\left.m / z, 273.0790\right] ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1720,1630$ and $1605 ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{CN}\right) 10.10(1 \mathrm{H}, \mathrm{d}, J 6,4-\mathrm{H}), 9.62(1 \mathrm{H}, \mathrm{d}, J$ $8,6-\mathrm{H}), 8.96(1 \mathrm{H}, \mathrm{d}, J 8,7-\mathrm{H}$ or $9-\mathrm{H}), 8.75(1 \mathrm{H}, \mathrm{d}, J 8,7-\mathrm{H}$ or $9-\mathrm{H}), 8.45(1 \mathrm{H}, \mathrm{dd}, J 8$ and $6,5-\mathrm{H}), 8.22(1 \mathrm{H}, \mathrm{t}, J 8,8-\mathrm{H}), 7.55$ ($5 \mathrm{H}, \mathrm{br} \mathrm{s}$) and $6.0-5.0(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$.

3-Oxo-2-phenyl-3a λ^{5}-azaphenalen-3a-ium-1-olate 4.-Triethylamine ($0.1 \mathrm{~cm}^{3}$) was added at room temperature to a stirred suspension of the salt $12(500 \mathrm{mg})$ in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$. Evaporation of the mixture gave a deep purple residue which was fractionated by column chromatography (silica gel;
$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}, 1: 1$) to give the title compound $\mathbf{4}(340 \mathrm{mg}, 90 \%)$ as deep purple, lustrous needles, m.p. $222{ }^{\circ} \mathrm{C}$ (Found: $\mathbf{M}^{+\cdot}$, 273.0767. $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{NO}_{2}$ requires $\left.M, 273.0790\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $1675,1625,1600,1390,1335$ and $775 ; \delta_{\mathrm{H}}\left[{ }^{2} \mathbf{H}_{6}\right] \mathrm{DMSO}+$ trace [${ }^{2} \mathrm{H}_{5}$]pyridine) $10.12(1 \mathrm{H}, \mathrm{dd}, J 6$ and $2,4-\mathrm{H}), 9.20(1 \mathrm{H}$, dd, $J 8$ and $2,6-\mathrm{H}), 8.86(1 \mathrm{H}, \mathrm{dd}, J 7$ and $2,7-\mathrm{H}$ or $9-\mathrm{H}), 8.45$ ($1 \mathrm{H}, J 8$ and $2,7-\mathrm{H}$ or $9-\mathrm{H}), 8.15(1 \mathrm{H}, J 8$ and $6,5-\mathrm{H}), 8.04$ ($1 \mathrm{H}, \mathrm{dd}, J 8$ and $7,8-\mathrm{H}$) and 7.57-7.14 ($5 \mathrm{H}, \mathrm{m}$).

Reaction of the Cross-conjugated Heterocyclic Mesomeric Betaine 4 with Dimethyl Acetylenedicarboxylate.-Pyridine ($0.02 \mathrm{~cm}^{3}$) was added at room temperature to a stirred mixture of the salt 12 (700 mg) and dimethyl acetylenedicarboxylate (DMAD) (800 mg) in dichloromethane ($10 \mathrm{~cm}^{3}$). After 8 h , evaporation and fractionation of the residue by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 95: 5$) gave dimethyl 9-oxo-10-phenyl-2H,9H-1-oxa-10b-azapyrene-2,3-dicarboxylate 14 ($230 \mathrm{mg}, 28 \%$) as yellow needles, m.p. $158{ }^{\circ} \mathrm{C}$ (from methanol) (Found: C, 66.4; H, 4.3; N, 3.2\%. $\mathrm{C}_{24} \mathrm{H}_{17^{-}}$ $\mathrm{NO}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C, $66.5 ; \mathrm{H}, 4.3 ; \mathrm{N}, 3.2 \%$) (Found: M^{+}, 415.1043. $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{NO}_{6}$ requires $M, 415.1056$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1755,1700 and $1630 ; \delta_{\mathrm{H}} 8.45(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $2,8-\mathrm{H}), 8.40$
$(1 \mathrm{H}, \mathrm{d}, J 10,5-\mathrm{H}), 7.63(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and $2,6-\mathrm{H}), 7.48(1 \mathrm{H}$, $\mathrm{m}, 7-\mathrm{H}), 7.48-7.38(6 \mathrm{H}, \mathrm{m}), 7.24(1 \mathrm{H}, \mathrm{d}, J 10,4-\mathrm{H}), 5.79(1 \mathrm{H}$, $\mathrm{s}, 2-\mathrm{H}), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$ and $3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$.

References

1 Part 5, W. D. Ollis, C. A. Ramsden and S. P. Stanforth, J. Chem. Soc., Perkin Trans. 1, 1989, 965.
2 W. D. Ollis, S. P. Stanforth and C. A. Ramsden, Tetrahedron, 1985, 41, 2239.
3 F. J. Kaemmerer and K. Perry, Ger. Pat., 2443567 (Chem. Abstr., 1976, 85, P5700t).
4 G. M. Coppola, A. D. Kahle and M. J. Shapiro, Org. Magn. Reson., 1981, 17, 242; J. L. G. Ruano, C. Pedregal and J. H. Rodriguez, Heterocycles, 1991, 32, 2151.
5 D. H. R. Barton, P. D. Magnus, J. A. Garbarino and R. N. Young, J. Chem. Soc., Perkin Trans. 1, 1974, 2101

6 Part 1, W. D. Ollis, C. A. Ramsden and S. P. Stanforth, J. Chem. Soc., Perkin Trans. 1, 1989, 945.

Paper 2/00426G
Received 27th January 1992
Accepted 9th March 1992

